Climate warming decreases the survival of the little auk (Alle alle), a high Arctic avian predator
نویسندگان
چکیده
Delayed maturity, low fecundity, and high adult survival are traits typical for species with a long-life expectancy. For such species, even a small change in adult survival can strongly affect the population dynamics and viability. We examined the effects of both regional and local climatic variability on adult survival of the little auk, a long-lived and numerous Arctic seabird species. We conducted a mark-resighting study for a period of 8 years (2006-2013) simultaneously at three little auk breeding sites that are influenced by the West Spitsbergen Current, which is the main carrier of warm, Atlantic water into the Arctic. We found that the survival of adult little auks was negatively correlated with both the North Atlantic Oscillation (NAO) index and local summer sea surface temperature (SST), with a time lag of 2 and 1 year, respectively. The effects of NAO and SST were likely mediated through a change in food quality and/or availability: (1) reproduction, growth, and development of Arctic Calanus copepods, the main prey of little auks, are negatively influenced by a reduction in sea ice, reduced ice algal production, and an earlier but shorter lasting spring bloom, all of which result from an increased NAO; (2) a high sea surface temperature shortens the reproductive period of Arctic Calanus, decreasing the number of eggs produced. A synchronous variation in survival rates at the different colonies indicates that climatic forcing was similar throughout the study area. Our findings suggest that a predicted warmer climate in the Arctic will negatively affect the population dynamics of the little auk, a high Arctic avian predator.
منابع مشابه
Inter-Colony Comparison of Diving Behavior of an Arctic Top Predator: Implications for Warming in the Greenland Sea
The goal of this study was to assess how diverse oceanographic conditions and prey communities affect the foraging behavior of little auks Alle alle. The Greenland Sea is characterized by 3 distinct water masses: (1) the East Greenland Current (EGC), which carries Arctic waters southward; (2) the Sørkapp Current (SC), which originates in the Arctic Ocean but flows north along the west coast of ...
متن کاملArctic warming: nonlinear impacts of sea-ice and glacier melt on seabird foraging.
Arctic climate change has profound impacts on the cryosphere, notably via shrinking sea-ice cover and retreating glaciers, and it is essential to evaluate and forecast the ecological consequences of such changes. We studied zooplankton-feeding little auks (Alle alle), a key sentinel species of the Arctic, at their northernmost breeding site in Franz-Josef Land (80°N), Russian Arctic. We tested ...
متن کاملBiologging, Remotely-Sensed Oceanography and the Continuous Plankton Recorder Reveal the Environmental Determinants of a Seabird Wintering Hotspot
Marine environments are greatly affected by climate change, and understanding how this perturbation affects marine vertebrates is a major issue. In this context, it is essential to identify the environmental drivers of animal distribution. Here, we focused on the little auk (Alle alle), one of the world's most numerous seabirds and a major component in Arctic food webs. Using a multidisciplinar...
متن کاملLittle auks buffer the impact of current Arctic climate change
Climate models predict a multi-degree warming of the North Atlantic in the 21st century. A research priority is to understand the effect of such changes upon marine organisms. With 40 to 80 million individuals, planktivorous little auks Alle alle are an essential component of pelagic food webs in this region that is potentially highly susceptible to climatic effects. Using an integrative study ...
متن کاملDiversification of Nitrogen Sources in Various Tundra Vegetation Types in the High Arctic
Low nitrogen availability in the high Arctic represents a major constraint for plant growth, which limits the tundra capacity for carbon retention and determines tundra vegetation types. The limited terrestrial nitrogen (N) pool in the tundra is augmented significantly by nesting seabirds, such as the planktivorous Little Auk (Alle alle). Therefore, N delivered by these birds may significantly ...
متن کامل